Aluminum Nanoholes for Optical Biosensing
نویسندگان
چکیده
منابع مشابه
Aluminum Nanoholes for Optical Biosensing
Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the na...
متن کاملFabricating a Highly Sensitive QCM Sensor Using AAO Nanoholes and Its Application for Biosensing
A nanostructure composed of Anodic Aluminum Oxide (AAO) was obtained on an electrode of a quartz crystal microbalance (QCM) chip by anodizing Al thin film in an oxalic acid solution. The effective surface area was expanded by these nanostructures. Several morphologies were observed under various anodic conditions by using scanning electron microscopy (SEM). We demonstrated that a QCM chip with ...
متن کاملChalcogenide Glass Optical Waveguides for Infrared Biosensing
Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole meta...
متن کاملLocalized Surface Plasmon Resonance Biosensing with Large Area of Gold Nanoholes Fabricated by Nanosphere Lithography
Localized surface plasmon resonance (LSPR) has been extensively studied as potential chemical and biological sensing platform due to its high sensitivity to local refractive index change induced by molecule adsorbate. Previous experiments have demonstrated the LSPR generated by gold nanoholes and its biosensing. Here, we realize large uniform area of nanoholes on scale of cm2 on glass substrate...
متن کاملLabel-free optical biosensing with slot-waveguides.
We demonstrate label-free molecule detection by using an integrated biosensor based on a Si(3)N(4)/SiO(2) slot-waveguide microring resonator. Bovine serum albumin (BSA) and anti-BSA molecular binding events on the sensor surface are monitored through the measurement of resonant wavelength shifts with varying biomolecule concentrations. The biosensor exhibited sensitivities of 1.8 and 3.2 nm/(ng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biosensors
سال: 2015
ISSN: 2079-6374
DOI: 10.3390/bios5030417